p-group, metabelian, nilpotent (class 2), monomial
Aliases: C23.61C24, C22.120C25, C42.584C23, C4.1332- 1+4, C4⋊C4.309C23, (C2×C4).110C24, C4⋊Q8.350C22, (C4×D4).245C22, (C2×D4).313C23, C22⋊C4.39C23, (C2×Q8).298C23, (C4×Q8).232C22, C4⋊D4.232C22, (C2×C42).964C22, C22⋊Q8.234C22, C2.38(C2×2- 1+4), C2.42(C2.C25), C4○(C22.58C24), C42⋊2C2.22C22, C22.58C24⋊6C2, (C22×C4).1218C23, C4.4D4.180C22, C42.C2.161C22, C4○2(C22.57C24), C4○2(C22.56C24), C22.56C24⋊21C2, C23.37C23⋊48C2, C42⋊C2.240C22, C23.36C23⋊45C2, C22.57C24⋊25C2, C22.D4.37C22, (C2×C4)○(C22.58C24), SmallGroup(128,2263)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Generators and relations for C22.120C25
G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=e2=b, g2=a, ab=ba, dcd-1=ac=ca, fdf=ad=da, ae=ea, af=fa, ag=ga, ece-1=bc=cb, bd=db, be=eb, bf=fb, bg=gb, fcf=abc, cg=gc, ede-1=abd, dg=gd, ef=fe, eg=ge, fg=gf >
Subgroups: 620 in 465 conjugacy classes, 380 normal (6 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×Q8, C2×C42, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C42.C2, C42⋊2C2, C4⋊Q8, C23.36C23, C23.37C23, C22.56C24, C22.57C24, C22.58C24, C22.120C25
Quotients: C1, C2, C22, C23, C24, 2- 1+4, C25, C2×2- 1+4, C2.C25, C22.120C25
(1 27)(2 28)(3 25)(4 26)(5 36)(6 33)(7 34)(8 35)(9 13)(10 14)(11 15)(12 16)(17 44)(18 41)(19 42)(20 43)(21 29)(22 30)(23 31)(24 32)(37 46)(38 47)(39 48)(40 45)(49 58)(50 59)(51 60)(52 57)(53 62)(54 63)(55 64)(56 61)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 59)(2 51)(3 57)(4 49)(5 43)(6 17)(7 41)(8 19)(9 47)(10 39)(11 45)(12 37)(13 38)(14 48)(15 40)(16 46)(18 34)(20 36)(21 61)(22 53)(23 63)(24 55)(25 52)(26 58)(27 50)(28 60)(29 56)(30 62)(31 54)(32 64)(33 44)(35 42)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 21 3 23)(2 32 4 30)(5 16 7 14)(6 11 8 9)(10 36 12 34)(13 33 15 35)(17 47 19 45)(18 37 20 39)(22 28 24 26)(25 31 27 29)(38 42 40 44)(41 46 43 48)(49 64 51 62)(50 54 52 56)(53 58 55 60)(57 61 59 63)
(2 28)(4 26)(5 36)(7 34)(10 14)(12 16)(17 42)(18 20)(19 44)(22 30)(24 32)(37 39)(38 45)(40 47)(41 43)(46 48)(49 51)(50 57)(52 59)(53 55)(54 61)(56 63)(58 60)(62 64)
(1 15 27 11)(2 16 28 12)(3 13 25 9)(4 14 26 10)(5 22 36 30)(6 23 33 31)(7 24 34 32)(8 21 35 29)(17 63 44 54)(18 64 41 55)(19 61 42 56)(20 62 43 53)(37 51 46 60)(38 52 47 57)(39 49 48 58)(40 50 45 59)
G:=sub<Sym(64)| (1,27)(2,28)(3,25)(4,26)(5,36)(6,33)(7,34)(8,35)(9,13)(10,14)(11,15)(12,16)(17,44)(18,41)(19,42)(20,43)(21,29)(22,30)(23,31)(24,32)(37,46)(38,47)(39,48)(40,45)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,59)(2,51)(3,57)(4,49)(5,43)(6,17)(7,41)(8,19)(9,47)(10,39)(11,45)(12,37)(13,38)(14,48)(15,40)(16,46)(18,34)(20,36)(21,61)(22,53)(23,63)(24,55)(25,52)(26,58)(27,50)(28,60)(29,56)(30,62)(31,54)(32,64)(33,44)(35,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,21,3,23)(2,32,4,30)(5,16,7,14)(6,11,8,9)(10,36,12,34)(13,33,15,35)(17,47,19,45)(18,37,20,39)(22,28,24,26)(25,31,27,29)(38,42,40,44)(41,46,43,48)(49,64,51,62)(50,54,52,56)(53,58,55,60)(57,61,59,63), (2,28)(4,26)(5,36)(7,34)(10,14)(12,16)(17,42)(18,20)(19,44)(22,30)(24,32)(37,39)(38,45)(40,47)(41,43)(46,48)(49,51)(50,57)(52,59)(53,55)(54,61)(56,63)(58,60)(62,64), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,36,30)(6,23,33,31)(7,24,34,32)(8,21,35,29)(17,63,44,54)(18,64,41,55)(19,61,42,56)(20,62,43,53)(37,51,46,60)(38,52,47,57)(39,49,48,58)(40,50,45,59)>;
G:=Group( (1,27)(2,28)(3,25)(4,26)(5,36)(6,33)(7,34)(8,35)(9,13)(10,14)(11,15)(12,16)(17,44)(18,41)(19,42)(20,43)(21,29)(22,30)(23,31)(24,32)(37,46)(38,47)(39,48)(40,45)(49,58)(50,59)(51,60)(52,57)(53,62)(54,63)(55,64)(56,61), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,59)(2,51)(3,57)(4,49)(5,43)(6,17)(7,41)(8,19)(9,47)(10,39)(11,45)(12,37)(13,38)(14,48)(15,40)(16,46)(18,34)(20,36)(21,61)(22,53)(23,63)(24,55)(25,52)(26,58)(27,50)(28,60)(29,56)(30,62)(31,54)(32,64)(33,44)(35,42), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,21,3,23)(2,32,4,30)(5,16,7,14)(6,11,8,9)(10,36,12,34)(13,33,15,35)(17,47,19,45)(18,37,20,39)(22,28,24,26)(25,31,27,29)(38,42,40,44)(41,46,43,48)(49,64,51,62)(50,54,52,56)(53,58,55,60)(57,61,59,63), (2,28)(4,26)(5,36)(7,34)(10,14)(12,16)(17,42)(18,20)(19,44)(22,30)(24,32)(37,39)(38,45)(40,47)(41,43)(46,48)(49,51)(50,57)(52,59)(53,55)(54,61)(56,63)(58,60)(62,64), (1,15,27,11)(2,16,28,12)(3,13,25,9)(4,14,26,10)(5,22,36,30)(6,23,33,31)(7,24,34,32)(8,21,35,29)(17,63,44,54)(18,64,41,55)(19,61,42,56)(20,62,43,53)(37,51,46,60)(38,52,47,57)(39,49,48,58)(40,50,45,59) );
G=PermutationGroup([[(1,27),(2,28),(3,25),(4,26),(5,36),(6,33),(7,34),(8,35),(9,13),(10,14),(11,15),(12,16),(17,44),(18,41),(19,42),(20,43),(21,29),(22,30),(23,31),(24,32),(37,46),(38,47),(39,48),(40,45),(49,58),(50,59),(51,60),(52,57),(53,62),(54,63),(55,64),(56,61)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,59),(2,51),(3,57),(4,49),(5,43),(6,17),(7,41),(8,19),(9,47),(10,39),(11,45),(12,37),(13,38),(14,48),(15,40),(16,46),(18,34),(20,36),(21,61),(22,53),(23,63),(24,55),(25,52),(26,58),(27,50),(28,60),(29,56),(30,62),(31,54),(32,64),(33,44),(35,42)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,21,3,23),(2,32,4,30),(5,16,7,14),(6,11,8,9),(10,36,12,34),(13,33,15,35),(17,47,19,45),(18,37,20,39),(22,28,24,26),(25,31,27,29),(38,42,40,44),(41,46,43,48),(49,64,51,62),(50,54,52,56),(53,58,55,60),(57,61,59,63)], [(2,28),(4,26),(5,36),(7,34),(10,14),(12,16),(17,42),(18,20),(19,44),(22,30),(24,32),(37,39),(38,45),(40,47),(41,43),(46,48),(49,51),(50,57),(52,59),(53,55),(54,61),(56,63),(58,60),(62,64)], [(1,15,27,11),(2,16,28,12),(3,13,25,9),(4,14,26,10),(5,22,36,30),(6,23,33,31),(7,24,34,32),(8,21,35,29),(17,63,44,54),(18,64,41,55),(19,61,42,56),(20,62,43,53),(37,51,46,60),(38,52,47,57),(39,49,48,58),(40,50,45,59)]])
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4AC |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | - | |
image | C1 | C2 | C2 | C2 | C2 | C2 | 2- 1+4 | C2.C25 |
kernel | C22.120C25 | C23.36C23 | C23.37C23 | C22.56C24 | C22.57C24 | C22.58C24 | C4 | C2 |
# reps | 1 | 10 | 5 | 5 | 10 | 1 | 2 | 4 |
Matrix representation of C22.120C25 ►in GL8(𝔽5)
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 |
G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,3] >;
C22.120C25 in GAP, Magma, Sage, TeX
C_2^2._{120}C_2^5
% in TeX
G:=Group("C2^2.120C2^5");
// GroupNames label
G:=SmallGroup(128,2263);
// by ID
G=gap.SmallGroup(128,2263);
# by ID
G:=PCGroup([7,-2,2,2,2,2,-2,2,477,456,1430,1059,352,2915,570,102]);
// Polycyclic
G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=e^2=b,g^2=a,a*b=b*a,d*c*d^-1=a*c=c*a,f*d*f=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,e*c*e^-1=b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,f*c*f=a*b*c,c*g=g*c,e*d*e^-1=a*b*d,d*g=g*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations